Part. 2※
今天,以太作为另外一种概念用来命名一种网络协议(以太网Ethernet),生活在e时代的我们每每看到这个词的时候,是不是也会生出几许慨叹?
Part. 3※
牛顿后来虽然打死也不肯承认胡克对其有所帮助,但多数科学史家都认为胡克在这里给牛顿提供了关键性的启发:没有胡克的纠正,牛顿会一直错误地以为行星运动是在两个平衡力——向心力和离心力——同时作用下进行的。
Part. 5※
经典力学、经典电动力学和经典热力学(加上统计力学)形成了物理世界的三大支柱。它们紧紧地结合在一起,构筑起一座华丽而雄伟的殿堂。
Part. 1※
这两朵著名的乌云,分别指的是经典物理在光以太和麦克斯韦-玻尔兹曼能量均分学说上遇到的难题。再具体一些,指的就是人们在迈克尔逊-莫雷实验和黑体辐射研究中的困境。
第一朵乌云,最终导致了相对论革命的爆发。第二朵乌云,最终导致了量子论革命的爆发
Part. 3※
1918年普朗克在普鲁士科学院发言时说:“就算敌人剥夺了我们祖国的国防力量,就算危机正在我们眼前发生,甚至还有更严重的危机即将到来,有一样东西是不论国内或国外的敌人都不能从我们手上夺走的,那就是德国科学在世界上的地位……
Part. 4※
必须假定,能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。
普朗克发现,能量的传输也必须遵照这种货币式的方法,一次至少要传输一个确定的量,而不可以无限地细分下去。能量的传输,也必须有一个最小的基本单位。能量只能以这个单位为基础一份份地发出,而不能出现半个单位或者四分之一单位这种情况。在两个单位之间,是能量的禁区,我们永远也不会发现,能量的计量会出现小数点以后的数字。
量子就是能量的最小单位,就是能量里的一分钱,一切能量的传输,都只能以这个量为基本单位来进行。它可以传输一个量子,两个量子,任意整数个量子,但却不能传输[插图]个量子。那个状态是不允许的,就像你不能用现钱支付[插图]美分一样。
“普朗克常数”。它约等于6.626×10-27尔格/秒,也就是6.626×10-34焦耳/秒。这个值,正如我们以后将要看到的那样,原来竟是构成我们整个宇宙最为重要的三个基本物理常数之一(另两个是引力常数G和光速c)。
Part. 5※
普朗克就像是童话里的那个渔夫,他亲手把魔鬼从封印的瓶子里放了出来,自己却反而被这个魔鬼吓了个半死。
Part. 2※
从光量子的角度出发,一切变得非常简明易懂了。频率更高的光线,比如紫外光,它的单个量子要比频率低的光线含有更高的能量(E=hν),因此当它的量子作用到金属表面的时候,就能够激发出拥有更高动能的电子来。而量子的能量和光线的强度没有关系,强光只不过包含了更多数量的光量子而已,所以能够激发出更多数量的电子来。但是对于低频光来说,它的每一个量子都不足以激发出电子,那么,含有再多的光量子也无济于事。
Part. 3※
光量子和传统的电磁波动图像显得格格不入。它其实就是昔日微粒说的一种翻版,假设光是离散的,由一个个小的基本单位所组成的
:那一部分波长变长的射线是因为光子和电子碰撞所引起的。光子像普通的小球那样,不仅带有能量,还具有冲量,当它和电子相撞,便将自己的能量交换一部分给电子。这样一来光子的能量下降,根据公式E=hν,E下降导致ν下降,频率变小,便是波长变大,证明完毕。
Part. 4※
卢瑟福发扬了亚里士多德前辈“吾爱吾师,但吾更爱真理”的优良品格,决定修改汤姆逊的葡萄干布丁模型。他认识到,α粒子被反弹回来,必定是因为它们和金箔原子中某种极为坚硬密实的核心发生了碰撞。这个核心应该是带正电,而且集中了原子的大部分质量。但是,从α粒子只有很少一部分出现大角度散射这一情况来看,那核心占据的地方是很小的,不到原子半径的万分之一。
狄拉克获奖的时候才31岁,他对卢瑟福说他不想领这个奖,因为他讨厌在公众中的名声。卢瑟福劝道,如果不领奖的话,那么这个名声可就更响了。
Part. 5※
玻尔面临着选择:要么放弃卢瑟福模型,要么放弃麦克斯韦和他的伟大理论。玻尔勇气十足地选择了放弃后者。他以一种深刻的洞察力预见到,在原子这样小的层次上,经典理论将不再成立,新的革命性思想必须被引入,这个思想就是普朗克的量子以及他的h常数。
一个大胆的想法在玻尔的脑中浮现出来:原子内部只能释放特定量的能量,说明电子只能在特定的“势能位置”之间转换。也就是说,电子只能按照某些“确定的”轨道运行,这些轨道必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴尔末公式的能量来。
在这里,台阶数“必须”是整数,就是我们的量子化条件。这个条件就限制了每级台阶的高度只能是1米,或者1/2米,或者1/3米……而不能是这其间的任何一个数字。
在这一过程中,电子只能释放或吸收特定的能量(由光谱的巴尔末公式给出),而不是连续不断的。玻尔做出了合理的推断:这说明电子所攀登的“台阶”,它们必须符合一定的高度条件,而不能像经典理论所假设的那样,是连续而任意的。连续性被破坏,量子化条件必须成为原子理论的主宰。
Part. 1※
玻尔假设,电子在围绕原子核运转时,只能处于一些“特定的”能量状态中。这些能量状态是不连续的,称为定态。你可以有E1,可以有E2,但是不能取E1和E2之间的任何数值。正如我们已经描述过的那样,电子只能处于这些定态中,两个定态之间没有缓冲地带,那里是电子的禁区,电子无法出现在那里。玻尔规定:当电子处在某个定态的时候,它就是稳定的,不会放射出任何形式的辐射而失去能量。这样,就不会出现崩溃问题了。
玻尔也允许电子在不同的能量态之间转换,或者说,跃迁。电子从能量高的E2状态跃迁到E1状态,就放射出E2-E1的能量来,这些能量以辐射的方式释放,根据我们的基本公式,我们知道这辐射的频率为ν,从而使得E2-E1=hν。反过来,当电子吸收了能量,它也可以从能量低的状态攀升到一个能量较高的状态,其关系还是符合我们的公式。
当电子既不放射也不吸收能量的时候,它就稳定地在一条轨道上运动。当它吸收了一定的能量,它就从原先的那个轨道消失,神秘地出现在离核较远的一条能量更高的轨道上。反过来,当它绝望地向着核坠落,就放射出它在高能轨道上所搜刮的能量,一直到落入最低能量的那个定态,也就是所谓的“基态”为止。因为基态的能量是最低的,电子无法再往下跃迁,于是便恢复稳定状态。
这种能量的跃迁是一个量子化的行为,如果电子从E2跃迁到E1,这并不表示,电子在这一过程中经历了E2和E1两个能量之间的任何状态。如果你还是觉得困惑,那表示连续性的幽灵还在你的脑海中盘旋。事实上,量子像一个高超的魔术师,它在舞台的一端微笑着挥舞着帽子登场,转眼间便出现在舞台的另一边。而在任何时候,它也没有经过舞台的中央部分!
在经历了这样一场量子化的洗礼后,原子理论以一种全新的形象出现在人们面前,并很快结出累累硕果。根据玻尔模型,人们不久就发现,一个原子的化学性质主要取决于它最外层的电子数量,并由此表现出有规律的周期性来,这就为周期表的存在提供了最好的理论依据。
没有两个电子能够享有同样的状态,而一层轨道所能够包容的不同状态,其数目是有限的,也就是说,一个轨道有着一定的容量。当电子填满了一个轨道后,其他电子便无法再加入到这个轨道中。
一个原子就像一幢宿舍,每间房都有一个四位数的门牌号码。底楼只有两间房,分别是1001和1002。而二楼则有8间房,门牌分别是2001、2002、2101、2102、2111、2112、2121和2122。越是高层的楼,它的房间数量就越多,租金也越贵。脾气暴躁的管理员泡利在大门口张贴了一张布告,宣布不能有两个电子房客入住同一间房屋。于是电子们争先恐后地涌入这幢大厦,先到的两位占据了底楼那两个价廉物美的房间,后来者因为底楼已经住满,便不得不退而求其次,开始填充二楼较贵的房间。二楼住满后,又轮到三楼、四楼……一直到租金高得离谱的六楼、七楼、八楼。不幸住在高处的电子虽然入不敷出,却没有办法,因为楼下的便宜房间都住满了,没法搬进去。叫苦不迭的电子们把泡利那蛮横的规定称作“不相容原理”
这种观点,即宇宙在各个层次上展现出相似的结构,被称为“分形宇宙”(Fractal Universe)模型。在它看来,哪怕是一个原子,也包含了整个宇宙的某些信息,是一个宇宙的“全息胚”。
Part. 2※
物理学,海森堡坚定地想,应当有一个坚固的基础,它只能够从一些直接可以被实验观察和检验的东西出发。一个物理学家应当始终坚持严格的经验主义,而不是想象一些图像来作为理论的基础。玻尔理论的毛病恰恰就出在这上面
在经典力学中,一个周期性的振动可以用数学方法分解成为一系列简谐振动的叠加,这个方法叫作傅里叶级数展开(Fourier series),
Part. 4※
新体系显然在理论上获得了巨大的成功。泡利很快就改变了他的态度,在写给克罗尼格(Ralph Laer Kronig)的信里,他说:“海森堡的力学让我有了新的热情和希望。”随后他很快就给出了极其有说服力的证明,展示新理论的结果和氢原子的光谱符合得非常完美,从量子规则中,巴尔末公式可以被自然而然地推导出来。非常好笑的是,虽然他不久前还对波恩咆哮说“冗长和复杂的形式主义”,但他自己的证明无疑动用了最最复杂的数学。
另一个流传很广的笑话:有一次狄拉克在某大学演讲,讲完后一个观众站起来说:“狄拉克教授,我不明白你那个公式是如何推导出来的。”狄拉克看着他久久地不说话,主持人不得不提醒他,还没有回答问题。“回答什么问题?”狄拉克奇怪地说,“他刚刚说的是一个陈述句,不是一个疑问句。”
Part. 5※
因为这样就又回到了一种图像化的电子概念那里,把电子想象成一个实实在在的小球,而违背了我们从观察和数学出发的本意了。如果电子真是这样一个带电小球的话,在麦克斯韦体系里是不稳定的,再说也违反相对论——它的表面旋转速度要高于光速。
电子的自旋并不能被想象成传统行星的那种自转,它具有1/2的量子数,也就是说,它要转两圈才露出同一个面孔,这里面的意义只能由数学来把握。
Part. 2※
矩阵方面提倡彻底的激进的改革,摒弃旧理论的直观性,以数学为唯一基础,是革命的左派。而波动方面相对保守,它强调继承性和古典观念,重视理论的形象化和物理意义,是革命的右派。
薛定谔、泡利、约尔当都各自证明了两种力学在数学上来说是完全等价的!事实上,我们追寻它们各自的家族史,发现它们都是从经典的哈密顿函数而来,只不过一个是从粒子的运动方程出发,另一个是从波动方程出发罢了。而光学和运动学早就已经在哈密顿本人的努力下被联系在了一起,这当真叫作“本是同根生”了。
数学上的一致并不能阻止人们对这种分歧进行不同的诠释,就矩阵方面来说,它的本意是粒子性和不连续性。而波动方面却始终在谈论波动性和连续性
Part. 3※
通常我们会以为,先有物理量的定义,然后才谈得上寻找它们的数学关系。比如我们懂得了力F、加速度a和质量m的概念,之后才会理解F=ma的意义。但现代物理学的路子往往可能是相反的,比如物理学家很可能会先定义某个函数F,让F=ma,然后才去寻找F的物理意义,发现它原来是力的量度。薛定谔的ψ,就是在空间中定义的某种分布函数,只是人们还不知道它的物理意义是什么。
我们必须把一切关于粒子的假象都从头脑里清除出去,不管是电子也好,光子也好,什么什么子也好,它们都不是那种传统意义上的粒子。把它们拉出来放大,仔细审视它们,你会发现它们在空间里融化开来,变成无数振动的叠加。
Part. 4※
骰子,这才是薛定谔波函数ψ的解释,它代表的是一种随机、一种概率,而绝不是薛定谔本人所理解的电子电荷在空间中的实际分布。波恩争辩道,ψ,或者更准确一点,ψ的平方,代表了电子在某个地点出现的“概率”。电子本身不会像波那样扩展开去,但是它的出现概率则像一个波,严格地按照ψ的分布所展开。
不过,我们经过大量的观察却可以发现,这个电子不是完全没有规律的:它在某些地方出现的可能性要大一些,在另一些地方则小一些。它出现频率高的地方,恰恰是波动所预言的干涉条纹的亮处,它出现频率低的地方则对应于暗处。现在我们可以理解为什么大量电子能组成干涉条纹了,因为虽然每一个电子的行为都是随机的,但这个随机分布的总的模式却是确定的,它就是一个干涉条纹的图案。
如果我们发现有九成的粒子聚集在亮带,只有一成的粒子在暗带,那么我们就可以预言,对于单个粒子来说,它有90%的可能性出现在亮带的区域,10%的可能性出现在暗带。但是,究竟出现在哪里,我们是无法确定的,我们只能预言概率而已。
是啊,上帝在物理学中能有什么位置呢?一切都是由物理定律来统治的,每一个分子都遵照物理定律来运行,如果说上帝有什么作用的话,他最多是在一开始推动了这个体系一下,让它得以开始运转罢了。在之后的漫长历史中,有没有上帝都是无关紧要的了,上帝被物理学赶出了舞台
Part. 1※
我们已经看到煊赫一时的经典物理大厦如何呼啦啦地轰然倾倒,我们已经看到以黑体问题为导索,普朗克的量子假设是如何点燃了新革命的星星之火。在这之后,爱因斯坦的光量子理论赋予了新生的量子以充实的力量,让它第一次站起身来傲视群雄,而玻尔的原子理论借助了它的无穷能量,开创出一片崭新的天地来。
关于光的本性,粒子和波动两种理论是如何从300年前开始不断地交锋,其间兴废存亡犹如白云苍狗,沧海桑田。从德布罗意开始,这种本质的矛盾成为物理学的基本问题,而海森堡从不连续性出发创立了他的矩阵力学,薛定谔沿着另一条连续性的道路也发现了他的波动方程。这两种理论虽然被数学证明是同等的,但是其物理意义却引起了广泛的争论,波恩的概率解释更是把数百年来的决定论推上了怀疑的舞台,成为浪尖上的焦点。
爱因斯坦笑了:“好把戏不能玩两次啊。你要知道在原则上,试图仅仅靠可观察的量来建立理论是不对的。事实恰恰相反,是理论决定了我们能够观察到的东西。
p×q ≠ q×p,这不是说,先观测动量p,再观测位置q,这和先观测q再观测p,其结果是不一样的吗
p×q ≠ q×p,难道说,我们的方程想告诉我们,同时观测p和q是不可能的吗?理论不但决定我们能够观察到的东西,它还决定哪些是我们观察不到的东西!
假如我们把p测量得100%准确,也就是说△p=0,那么△q就要变得无穷大。这就是说,假如我们了解了一个电子动量p的全部信息,那么我们就同时失去了它位置q的所有信息,我们一点都不知道,它究竟身在何方,不管我们怎么安排实验都没法做得更好。鱼与熊掌不能兼得,要么我们精确地知道p而对q放手,要么我们精确地知道q而放弃对p的全部知识,要么我们折中一下,同时获取一个比较模糊的p和比较模糊的q。
Part. 2※
如果我们用一种波去观察比它的波长还要小的事物的话,那就根本谈不上精确了,就像用粗笔画不出细线一样。如果我们想要观察电子这般微小的东西,我们必须采用波长很短的光。普通光不行,要用紫外线、X射线,甚至γ射线才行。”
每当我们用一个光子去探测电子的位置,就会给它造成强烈的扰动,让它改变方向速度,向另一个方向飞去
这个基本能量被称作“零点能”(zero-point energy),它就是量子处在基态时的能量。我们的宇宙空间,在每一点上其实都充满了大量的零点能,这就给未来的星际航行提供了取之不尽的能源
海森堡告诉我们,在极小的空间和极短的时间里,什么都是有可能发生的。因为我们对时间非常确定,所以反过来对能量就非常不确定,能量物质可以逃脱物理定律的束缚,自由自在地出现和消失。但是,这种自由的代价就是它只能限定在那一段极短的时间内,时刻一到,灰姑娘就会现出原形,这些神秘的物质能量便要消失,以维护质能守恒定律在大尺度上不被破坏。
Part. 3※
不确定性确实是建立在波和粒子的双重基础上的,它其实是电子在波和粒子间的一种摇摆:对于波的属性了解得越多,关于粒子的属性就了解得越少。
我们的结论是,讨论哪个是“真实”毫无意义。我们唯一能说的,是在某种观察方式确定的前提下,它呈现出什么样子
波和粒子在同一时刻是互斥的,但它们却在一个更高的层次上统一在一起,作为电子的两面被纳入一个整体概念中。这就是玻尔的“互补原理”(The Complementary Principle),它连同波恩的概率解释,海森堡的不确定性,三者共同构成了量子论“哥本哈根解释”的核心,至今仍然深刻地影响着我们对于整个宇宙的终极认识
Part. 4※
如果不定义一个测量动量的方式,那么我们谈论电子动量就是没有意义的?这听上去似乎是一种唯心主义的说法。难道我们无法测量电子,它就没有动量了吗?让我们非常惊讶和尴尬的是,玻尔和海森堡两个人对此大点其头。一点也不错,假如一个物理概念是无法测量的,它就是没有意义的。
一个具有准确p和q的经典电子?这恐怕是自欺欺人吧。有任何仪器可以探测到这样的一个电子吗?——没有,理论上也不可能有。那么,同样道理,一个在臆想的世界中生存的,完全探测不到的电子,和根本没有这样一个电子又有什么区别呢?
换言之,不存在一个客观的、绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够揭示出自然“是什么”,而在于它能够明确,关于自然我们能“说什么”。没有一个脱离于观测而存在的“绝对自然”,只有我们和那些复杂的测量关系,熙熙攘攘纵横交错,构成了这个令人心醉的宇宙的全部。测量是新物理学的核心,测量行为创造了整个世界。
Part. 5※
在概率解释、不确定性原理和互补原理这三大核心原理中,前两者摧毁了经典世界的(严格)因果性,互补原理和不确定性原理又合力捣毁了世界的(绝对)客观性。
哥本哈根解释的基本内容,全都围绕着三大核心原理而展开。我们在前面已经说到,首先,不确定性原理限制了我们对微观事物认识的极限,而这个极限也就是具有物理意义的一切。其次,因为存在观测者对于被观测物的不可避免的扰动,现在主体和客体世界必须被理解成一个不可分割的整体。没有一个孤立地存在于客观世界的“事物”(being),事实上一个纯粹的客观世界是没有的,任何事物都只有结合一个特定的观测手段,才谈得上具体意义。对象所表现出的形态,很大程度上取决于我们的观察方法。对同一个对象来说,这些表现形态可能是互相排斥的,但必须被同时用于这个对象的描述中,也就是互补原理。最后,因为我们的观测给事物带来各种原则上不可预测的扰动,量子世界的本质是“随机性”。传统观念中的严格因果关系在量子世界是不存在的,必须以一种统计性的解释来取而代之
至于令人迷惑的波粒二象性,那也只是量子微观世界的奇特性质罢了。我们已经谈到德布罗意方程λ=h/p,改写一下就是λp=h,波长和动量的乘积等于普朗克常数h。对于微观粒子来说,它的动量非常小,所以相应的波长便不能忽略。但对于日常事物来说,它们质量之大相比h简直是个天文数字,所以对于生活中的一个足球,它所伴随的德布罗意波微乎其微,根本感觉不到。我们一点都用不着担心,在世界杯决赛中,眼看要入门的那个球会突然化为一缕波,消失得杳然无踪。
在我们观测电子以前,它实际上处在一种叠加态,所有关于位置的可能性叠合在一起,弥漫到整个空间中去。但是,当我们真的去“看”它的时候,电子便无法保持它这样优雅而面面俱到的行为方式了,它被迫作出选择,在无数种可能性中挑选一种,以一个确定的位置出现在我们面前。
在电子通过双缝前,假如我们不去测量它的位置,那么它的波函数就按照方程发散开去,同时通过两条缝而自我互相干涉。但要是我们试图在两条缝上装个仪器以探测它究竟通过了哪条缝,在那一刹那,电子的波函数便坍缩了,电子随机地选择了一条缝通过。而坍缩过的波函数自然就无法再进行干涉,于是乎,干涉条纹一去不复返。
Part. 3※
我们可以不理会数学推导,关键是爱因斯坦忽略了广义相对论的红移效应!引力场可以使原子频率变低,也就是红移,等效于时间变慢。当我们测量一个很准确的△m时,我们在很大程度上改变了箱子里的时钟,造成了一个很大的不确定的△t。也就是说,在爱因斯坦的装置里,假如我们准确地测量△m或者△E时,我们就根本没法控制光子逃出的时间T!
Part. 4※
量子论认为在我们没有观察之前,一个粒子的状态是不确定的,它的波函数弥散开来,代表它的概率。但当我们探测以后,波函数坍缩,粒子随机地取一个确定值出现在我们面前。
原来爱因斯坦和玻尔根本没有共同的基础。在爱因斯坦的潜意识里,一直有个经典的“实在”影像。他不言而喻地假定,EPR实验中的两个粒子在观察之前,分别都有“客观”的自旋状态存在,就算是概率混合吧,但粒子客观地存在于那里。然而,玻尔的意思是,在观测之前,没有一个什么粒子的“自旋”!因为你没有定义观测方式,那时候谈论自旋的粒子是无意义的,它根本不是物理实在的一部分,这不能用经典语言来表达,只有波函数可以描述。因此,在观察之前,两个粒子——无论相隔多远都好——仍然是一个互相关联的整体!它们仍然必须被看作母粒子分裂时的一个全部,直到观察以前,这两个独立的粒子都是不存在的,更谈不上客观的自旋状态!
Part. 5※
不仅仅是猫,一切的一切,当我们不去观察的时候,都是处在不确定的叠加状态的,因为世间万物也都是由服从不确定性原理的原子组成,所以一切都不能免俗。量子派后来有一个被哄传得很广的论调说:“当我们不观察时,月亮是不存在的。”这稍稍偏离了本意,准确来说,因为月亮也是由不确定的粒子组成的,所以如果我们转过头不去看月亮,那一大堆粒子就开始按照波函数弥散开去。于是乎,月亮的边缘开始显得模糊而不确定,它逐渐“融化”,变成概率波扩散到周围的空间里去。当然这么大一个月亮完全“融化”成空间中的概率是需要很长很长时间的,不过问题的实质是:要是不观察月亮,它就从确定的状态变成无数不确定的叠加。不观察它时,一个确定的、客观的月亮是不存在的。但只要一回头,一轮明月便又高悬空中,似乎什么事也没发生过一样。
与贝克莱互相辉映的东方代表大概要属王阳明。他在《传习录·下》中也说过一句有名的话:“你未看此花时,此花与汝同归于寂;你来看此花时,则此花颜色一时明白起来……”如果王阳明懂量子论,他多半会说:“你未观测此花时,此花并未实在地存在,按波函数而归于寂;你来观测此花时,则此花波函数发生坍缩,它的颜色一时变成明白的实在……”测量即是理,测量外无理。
令我们吃惊的是,这的确可能是至关重要的分别!人可以感觉到自己的存活,而猫不能,换句话说,人有能力“测量”自己活着与否,而猫不能!人有一样猫所没有的东西,那就是“意识”!因此,人能够测量自己的波函数使其坍缩,而猫无能为力,只能停留在死/活叠加任其发展的波函数中。
Part. 1※
冯·诺伊曼敏锐地指出,我们用于测量目标的那些仪器本身也是由不确定的粒子组成的,它们自己也拥有自己的波函数。当我们用仪器去“观测”的时候,这只会把仪器本身也卷入到这个模糊叠加态中去。怎么说呢,假如我们想测量一个电子是通过了左边还是右边的狭缝,我们用一台仪器去测量,并用指针摇摆的方向来报告这一结果。但是,令人哭笑不得的是,因为这台仪器本身也有自己的波函数,如果我们不“观测”这台仪器本身,它的波函数便也陷入一种模糊的叠加态中!诺伊曼的数学模型显示,当仪器测量电子后,电子的波函数坍缩了不假,但左/右的叠加只是被转移到了仪器那里而已。现在是我们的仪器处于指针指向左还是右的叠加状态了!假如我们再用仪器B去测量那台仪器A,好,现在A的波函数又坍缩了,它的状态变得确定,可是B又陷入模糊不定中……总而言之,当我们用仪器去测量仪器,这整个链条的最后一台仪器总是处在不确定状态中,这叫作“无限复归”(infinite regression)。从另一个角度看,假如我们把用于测量的仪器也加入到整个系统中去,这个大系统的波函数从未彻底坍缩过!
仪器也只不过给冯·诺伊曼的无限复归链条增添了一个环节而已,不观测这仪器,它仍然处在叠加的波函数中。
Part. 3※
任何一种基本量子现象只在其被记录之后才是一种现象”,光子是一开始还是最后才决定自己的“历史”,这在量子实验中是没有区别的,因为在量子论看来,历史不是确定和实在的——除非它已经被记录下来。更精确地说,光子在通过第一块半透镜到我们插入第二块半透镜之间“到底”在哪里,它是个什么,这是一个没有意义的问题。我们没有权利去谈论这时候光子“到底在哪里”,因为在观测之前,它并不是一个“客观真实”!
这说明,宇宙的历史说不定可以在已经发生后才被决定究竟是怎样发生的!在薛定谔的猫实验里,如果我们也能设计某种延迟实验,我们就能在实验结束后再来决定猫是死是活!比如说,原子在一点钟要么衰变毒死猫,要么就断开装置使猫存活。但如果有某个延迟装置能够让我们在两点钟来“延迟决定”原子衰变与否,我们就可以在两点钟这个“未来”去实际决定猫在一点钟的死活!
Part. 4※
到70年代,德威特重新发掘了他的多世界解释并在物理学家中大力宣传,MWI才开始为人所知,并迅速成为热门的话题之一。如今,这种解释已经拥有大量支持者,坐稳哥本哈根解释之后的第二把交椅,并大有后来者居上之势。
Part. 5※
现在让我们回到物理世界,我们如何去描述一个普通的粒子呢?在每一个时刻t,它应该具有一个确定的位置坐标(q1,q2,q3),还具有一个确定的动量p。动量是一个矢量,在每个维度方向都有分量,所以要描述动量p还得用3个数字:p1、p2和p3,分别表示它在3个方向上的速度。总而言之,要完全描述一个物理质点在t时刻的状态,我们一共要用到6个变量,而我们在前面已经看到了,这6个变量可以用6维空间中的一个点来概括。所以,用6维空间中的一个点,我们可以描述一个普通物理粒子的经典行为。我们这个存心构造出来的高维空间就是系统的相空间。
一个复杂系统的状态可以看成某种高维空间中的一个点或者一个矢量。
假设有一个矢量(1,2),我们容易看出它在x轴上投影为1,y轴上投影为2。如果有两个“质点人”A和B,A生活在x轴上,B生活在y轴上,那么对于A君来说,他对我们矢量的所有“感觉”就是其在x轴上的那段长度为1的投影,而B君则感觉到其在y轴上的长度为2的投影。因为A和B生活在不同的两个“世界”里,所以他们的感觉是不一样的!但事实上,“真实的”矢量只有一个,它是A和B所感觉到的“叠加”!我们的宇宙也是如此。“真实的,完全的”宇宙态矢量存在于一个非常高维(可能是无限维)的希尔伯特空间中,但这个高维的空间却由许许多多低维的“世界”构成(正如我们的三维空间可以看成由许多二维平面构成一样),每个“世界”都只能感受到那个“真实”的矢量在其中的投影,因此在每个“世界”感觉到的宇宙都是不同的。
总之,按照MWI,事情是这样的:“宇宙”(Universe)始终只有一个,它的状态可以为一个总体波函数所表示,这个波函数严格而连续地按照薛定谔方程演化。但从某一个特定“世界”(World)的角度来看,则未必如此。波函数随着时间的流逝变得愈加复杂,投影的世界也愈来愈多,薛定谔方程的每一个可能的解都对应了一种投影,因此一切可能发生的事情都在某个“世界”发生了。
Part. 1※
不过MWI的好处也是显而易见的,它最大的丰功伟绩就是把“观测者”这个碍手碍脚的东西从物理中一脚踢开。现在整个宇宙只是严格地按照波函数演化,不必再低声下气地去求助于“观测者”,或者“智能生物”的选择了。物理学家现在也不必再为那个奇迹般的“坍缩”大伤脑筋,无奈地在漂亮的理论框架上贴上丑陋的补丁,用以解释R过程的机理。我们可怜的薛定谔猫也终于摆脱了那又死又活的煎熬,而改为自得其乐地生活(一死一活)在两个不同的世界中。
更重要的是,大自然又可以自己做主了,它不必在“观测者”的阴影下战战兢兢地苟延残喘,直到某个拥有“意识”的主人赏了一次“观测”才得以变成现实,不然就只好在概率波叠加中埋没一生。在MWI里,宇宙本身重新成为唯一的主宰,任何观测者都是它的一部分,随着它的演化被分裂、投影到各种世界中去,而这过程只取决于环境的引入和不可逆的放大过程,这样一幅客观的景象还是符合大部分科学家的传统口味的,至少不会像哥本哈根派那样让人抓狂,以致寝食难安。
为什么必须可证伪呢?因为对于科学理论来说,“证实”几乎是不可能的。比如我说“宇宙的规律是F=ma”,这里说的是一种普遍性,而你如何去证实它呢?除非你观察遍了自古至今,宇宙每一个角落的现象,发现无一例外,你才算“证实”了这个命题。但即使这样,你也无法保证在将来的每一天,这条规律仍然都起作用。所以说,想要彻底“证实”这个公式,根本就是一个不可能的任务。
单凭列举“反面证据”,根本就不可能证伪牛顿理论。事实上,如果仔细考察科学史,我们就会发现,几乎没有任何理论是因为“被证伪”而倒台的,它们退出历史舞台,几乎只有一个理由,就是出现了一个更好、假设更少、更合理的新理论。正如我们在本篇史话中看到的那样,如果没有新的量子论出台,老的玻尔理论即便有一万个现象无法解释,即使打上一万个补丁,也仍然占据着物理界的主流地位。而牛顿理论之所以在今天被相对论取代,也并不是因为它“被证伪”了。从某种程度上说,只要你愿意提出各种奇葩的附加假设,你大可宣称牛顿力学至今仍是成立的。然而,绝大多数科学家都觉得,为了解释世间万物,相对论所用到的假设要少得多,也合理得多,因此他们“更乐意”运用相对论而已。
Part. 2※
两者有何实质不同呢?其关键就在于,哥本哈根派认为猫始终只有一只,它开始处在叠加态,坍缩后有50%的可能死,50%的可能活。而多宇宙认为猫并未叠加,而是“分裂”成了两只,一死一活,必定有一只活猫!
这就是从量子自杀思想实验推出的怪论,美其名曰“量子永生”(quantum immortality)。只要从主观视角来看,不但一个人永远无法完成自杀,事实上他一旦开始存在,就永远不会消失!
我们在多世界理论这条路上走得也够久了,和前面在哥本哈根派那里一样,我们的探索越到后来就越显得古怪离奇,道路崎岖不平,杂草丛生,让我们筋疲力尽,而且最后居然还会又碰到“意识”“永生”之类形而上的东西,真是见鬼!
Part. 3※
根据量子论的基本方程,所有的可能性都是线性叠加在一起的!电子同时通过了左和右两条缝,薛定谔的猫同时活着和死了。只有当实际观测它的时候,上帝才随机地掷一下骰子,告诉我们一个确定的结果,或者他老人家不掷骰子,而是把我们投影到两个不同的世界中去。
Part. 5※
在玻姆理论里,我们必须把电子想象成这样一种东西:它本质上是一个经典的粒子,但以它为中心发散出一种势场,这种势场弥漫在整个宇宙中,使它每时每刻都对周围的环境了如指掌。当一个电子向一个双缝进发时,它的量子势会在它到达之前便感应到双缝的存在,从而指导它按照标准的干涉模式行动。如果我们试图关闭一条狭缝,无处不在的量子势便会感应到这一变化,从而引导电子改变它的行为模式。特别是,如果你试图去测量一个电子的具体位置的话,你的测量仪器将首先与它的量子势发生作用,这将使电子本身发生微妙的变化。这种变化是不可预测的,因为主宰它们的是一些“隐变量”,你无法直接探测到它们。
现在让我们重做EPR实验:一个母粒子分裂成向相反方向飞开去的两个小粒子A和B,它们理论上具有相反的自旋,但在没有观察之前,照量子派的讲法,它们的自旋是处在不确定的叠加态中的,而爱因斯坦则坚持从分离的那一刻起,A和B的状态就都是确定了的。
Pxx=-N1-N2-……-N8=-1。
==为什么是-1,而不是0?==
Part. 1※
合作则需要双方都了解对方的情况,这样才能够有效地协调。在隐变量理论中,我们对两个粒子的描述是符合常识的:无论观察与否,两个粒子始终存在于客观现实之内,它们的状态从分裂的一刹那起就都是确定无疑的。假如我们禁止宇宙中有超越光速的信号传播,那么理论上,当我们同时观察两个粒子的时候,它们之间无法交换任何信息,它们所能达到的最大协作程度仅仅限于经典世界所给出的极限。这个极限,也就是我们用经典方法推导出来的贝尔不等式。
如果世界的本质是经典的,具体地说,如果我们的世界同时满足:1.定域的,也就是没有超光速信号的传播。2.实在的,也就是说,存在着一个独立于我们观察的外部世界。那么我们任意取3个方向观测A和B的自旋,它们所表现出来的协作程度必定要受限于贝尔不等式之内。换句话说,假如上帝是爱因斯坦所想象的那个不掷骰子的慈祥的“老头子”,那么贝尔不等式就是他给这个宇宙所定下的神圣的束缚。不管我们的观测方向是怎么取的,在EPR实验中的两个粒子绝不可能冒犯他老人家的尊严,而胆敢突破这一禁区。事实上,这不是敢不敢的问题,而是两个经典粒子在逻辑上根本不具有这样的能力,它们之间既然无法交换信号,就绝不能表现得亲密无间。
在一个量子主宰的世界里,A和B两粒子在相隔非常遥远的情况下,在不同方向上仍然可以表现出很高的协作程度,以致贝尔不等式不成立。这在经典图景中是绝不可能发生的。
总而言之,如果世界是经典的,那么在EPR中贝尔不等式就必须得到满足,反之则可以突破。我们手中的这个神秘的不等式成了判定宇宙最基本性质的试金石,它仿佛就是那把开启奥秘之门的钥匙,可以带领我们领悟到自然的终极奥义。
有华裔背景的如钱学森等遭到审查
==是不是也算是钱学森回国的原因之一呀?==
Part. 3※
它的确把物理学家们逼到了一种尴尬的地步。本来,人们在世界究竟是否“实在”这种问题上通常乐于奉行一种鸵鸟政策,能闭口不谈的就尽量不去讨论。量子论只要管用就可以了嘛,干吗非要刨根问底地去追究它背后的哲学意义到底是什么样的呢?虽然有爱因斯坦之类的人在为它担忧,但大部分科学家还是觉得无所谓的。不过现在,阿斯派克特终于逼着人们要摊牌了。一味地缩头缩脑是没用的,人们必须面对这样一个事实:实验否决了经典图景的可能性!
在阿斯派克特实验之后,我们必须说服自己相信这样一件事情: 定域的隐变量理论是不存在的! 换句话说,我们的世界不可能如同爱因斯坦所梦想的那样,既是定域的(没有超光速信号的传播),又是实在的(存在一个客观确定的世界,可以为隐变量所描述)。定域实在性(local realism)从我们的宇宙中被实验排除了出去,现在我们必须作出艰难的选择:要么放弃定域性,要么放弃实在性。
MWI是最为简单的解释,相对于种种比如“意识”这样稀奇古怪的概念来说,多宇宙的假设实际上是最廉价的!
阿斯派克特实验严酷地将我们的憧憬粉碎,当然它并没有证明量子论是绝对正确的(它只是支持了量子论的预言,正如我们讨论过的那样,没什么理论可以被“证明”是对的),但它无疑证明了爱因斯坦的世界观是错的!事实上,无论量子论是错是对,我们都已经不可能追回传说中的那个定域实在的理想国
EPR背后是不是真的隐藏着超光速我们仍然不能确定,至少它表面上看起来似乎是一种类似的效应。不过,我们并不能利用它实际地传送信息,所以这和爱因斯坦的狭义相对论并非矛盾。
Part. 4※
物理世界梦想的最高目标:理解和预测自然。
从某种程度上来说,系综主义者采取的是一种“眼不见为净”的做法。对于我们最为彷徨困惑的那些问题,比如单个电子的轨迹,单个薛定谔猫的死活,等等。它简单地把这些问题统统划为“没有意义”。
Part. 5※
我们已经不厌其烦地听取了足够多的耐心解释:猫的确又死又活,只不过在我们观测的时候“坍缩”了;有两只猫,它们在一个宇宙中活着,在另一个宇宙中死去;猫从未又死又活,它的死活由看不见的隐变量决定;单只猫的死活是无意义的事件,我们只能描述无穷只猫组成的“全集”诸如此类的答案。
Ghirardi等人把薛定谔方程换成了所谓的密度矩阵方程,然后做了复杂的计算,看看这样的自发定域过程会对整个系统造成什么样的影响。他们发现,因为整个系统中的粒子实际上都是互相纠缠在一起的,少数几个粒子的自发定域会非常迅速地影响到整个体系,就像推倒了一块骨牌然后造成了大规模的多米诺效应一样。最后的结果是,整个宏观系统会在极短的时间里完成一次整体上的自发定域。如果一个粒子平均要花上10亿年时间,那么对于一个含有1023个粒子的系统来说,它只要0.1微秒就会发生定域,使得自己的位置从弥漫开来变成精确地出现在某个地点。这里面既不需要“观测者”,也不牵涉到“意识”,它只是基于随机过程!
Part. 1※
我们还记得埃弗莱特的MWI:宇宙在薛定谔方程的演化中被投影到多个“世界”中去,在每个世界中产生不同的结果。这样一来,在宇宙的发展史上,就逐渐产生越来越多的“世界”。历史只有一个,但世界有很多个!
在MWI里当两个“世界”的维度变大,自由度增加时,它们就会变得更加“正交”,以至互相失去联系,即退相干。
Part. 2※
按照退相干历史(DH)的解释,假如我们能把宇宙的历史测量得足够精细,那么实际上每时每刻都有许许多多的精细历史在“同时发生”(相干)。比如没有观测时,电子显然就同时经历着“通过左缝”和“通过右缝”两种历史。但因为在现实中,我们不可能分辨出每一种精细历史,而只能简单地将这些历史进行归并分类。在这种情况下,我们实际观测到的只能是各种粗略历史。因为退相干的缘故,这些历史之间失去了联系,只有一种能够被我们感觉到。
时间只能向着未来流逝,而不能反过来,这件事情正是我们神奇的宇宙最不可思议的性质之一。
Part. 3※
我已经带领大家去探讨了哥本哈根、多宇宙、隐变量、系综、GRW、退相干历史6条道路
很明显,在这些花样繁多的提议中,除了一种以外,绝大多数都是错误的。甚至很可能到目前为止所有的解释都是错误的,但这却并没有妨碍物理学家们把它们创造出来!我们只能说,物理学家的想象力和创造力是非凡的,但这也引起了我们深深的忧虑:到底在多大程度上,物理理论如同人们骄傲地宣称的那样,是对大自然的深刻“发现”,而不属于物理学家们杰出的智力“发明”?
原来所有粒子都是弥漫在空间中的某种场,这些场有着不同的能量形态,而当能量最低时,这就是我们通常说的“真空”。因此,真空其实只不过是粒子的一种不同形态(基态)而已,任何粒子都可以从中被创造出来,也可以互相湮灭
Part. 4※
这样一来,我们的宇宙中就总共有4种相互作用力:引力、电磁力、强相互作用力和弱相互作用力。
Part. 5※
在M理论中,时空变成了11维,由此可以衍生出所有5种10维的超弦论来。
尾声 Finale※
科学在不停地检讨自己,但这种谦卑的审视和自我否定不但没有削弱它的光荣,反而使它获得了永恒的力量,也不断地增强着我们对于它的信心。人类居住在太阳系中的一颗小小行星上,我们的文明不过万年的历史,现代科学的创立不到400年。但我们的智慧贯穿整个时空,从最小的量子到最大的宇宙尺度,从大爆炸的那一刻到时间的终点,从最近的白矮星到最远的宇宙视界,没有什么可以阻挡我们探寻的步伐。这一切,都来自我们对成功的信念,对于科学的依赖,以及对于神奇的自然那永无休止的好奇。
Part. 2※
LSOS的出版人舒曼(Schuman)干脆写信给爱因斯坦,问:“诺贝尔得奖者当真不说谎?”爱因斯坦只好回信说:“只能讲诺贝尔奖不是靠说谎得来的,但也不能排除有些幸运者可能会在压力下在特定的场合说谎。”
Part. 3※
为了维持链式反应,必须至少要有一个最小量的铀235才行,这个质量叫作“临界质量”(critical mass),海森堡——不管他是真的算错还是假装不知——在1942年认为至少需要几吨的铀235才能造出原子弹!事实上,只要几十千克就可以了。