ALSOS的出版人舒曼(Schuman)干脆写信给爱因斯坦,问“诺贝尔得奖者当真不说谎?”爱因斯坦只好回信说:“只能讲诺贝尔奖不是靠说谎得来的,但也不能排除有些幸运者可能会在压力下在特定的场合说谎。”
2022-06-12
在相对论里,引力被描述为由于时空弯曲而造成的几何效应,而正如我们所看到的,量子场论把基本的力看成是交换粒子的作用,比如电磁力是交换光子,强相互作用力是交换胶子,弱相互作用力是交换中间玻色子。
2022-06-12
弱作用力和电磁力的一致性,他们的成果被称为“
2022-06-12
强相互作用力和弱相互力作用必定也是类似的机制。只不过在强相互作用力中,被交换的不是光子,而是“介子”(meson),而弱相互作用力中交换的则是“中间玻色子”。
2022-06-12
大家在中学里都知道电磁力:同性相斥,异性相吸。量子电动力学认为,这个力的本质是两个粒子之间不停地交换光子的结果。两个电子互相靠近并最终因为电磁力而弹开,这其中发生了什么呢?原来两个电子不停地在交换光子。想象两个溜冰场上的人,他们不停地把一只皮球抛来抛去,从一个人的手中扔到另一个人那里,这样一来他们必定离得越来越远,似乎他们之间有一种斥力一样。在电磁作用力中,这个皮球就是光子!那么异性相吸是怎么回事呢?你可以想象成两个人背靠背站立,并不停地把球扔到对方面对的墙壁上再反弹到对方手里。这样就似乎有一种吸力使两人紧紧靠在一起。
2022-06-12
我们必须借助量子论才能把握恒星的命运会何去何从:当它们的燃料耗尽之后,它们会不可避免地向内坍缩,这时支撑起它们最后骨架的就是源自泡利不相容原理的一种简并压力。当电子简并压力足够抵挡坍缩时,恒星就演化为白矮星。要是电子被征服,而要靠中子出来抵抗时,恒星就变为中子星。最后,如果一切防线都被突破,那么它就不可避免地坍缩成一个黑洞。但即使黑洞也不是完全“黑”的,如果充分考虑量子不确定因素的影响,黑洞其实也会产生辐射而逐渐消失,这就是以其鼎鼎大名的发现者史蒂芬•霍金而命名的“霍金蒸发”过程。
2022-06-12
我已经带领大家去探讨了哥本哈根、多宇宙、隐变量、系综、GRW、退相干历史等6条道路,但要告诉各位的是,仍然还有非常多的偏僻的小道,我们并没有提及。
2022-06-12
如果DH解释是正确的,那么我们每时每刻其实都经历着多重的历史,世界上的每一个粒子,事实上都处在所有可能历史的叠加中!但一旦涉及到宏观物体,我们所能够观察和描述的则无非是一些粗略化的历史,当细节被抹去时,这些历史便互相退相干,永久地失去了联系。比方说如果最终猫还活着,那么“猫死”这个分支就从历史树上被排除了,按照奥卡姆剃刀,我们不妨说这些历史已经不存在于宇宙之中。
2022-06-12
因为整个系统中的粒子实际上都是互相纠缠在一起的,少数几个粒子的自发定域会非常迅速地影响到整个体系,就像推倒了一块骨牌然后造成了大规模的多米诺效应。最后的结果是,整个宏观系统会在极短的时间里完成一次整体上的自发定域。如果一个粒子平均要花上10亿年时间,那么对于一个含有1023个粒子的系统来说,它只要0.1微秒就会发生定域,使得自己的位置从弥漫开来变成精确地出现在某个地点。这里面既不要“观测者”,也不牵涉到“意识”,它只是基于随机过程!
2022-06-12
我们已经听取了足够多耐心而不厌其烦的解释:猫的确又死又活,只不过在我们观测的时候“坍缩”了;有两只猫,它们在一个宇宙中活着,在另一个宇宙中死去;猫从未又死又活,它的死活由看不见的隐变量决定;单个猫的死活是无意义的事件,我们只能描述无穷只猫组成的“全集”……
2022-06-12
我们不自量力地想去追寻更多,那只不过是自讨苦吃。单个电子的轨迹,那是一个没有物理定义的概念,正如“时间被创造前1秒”,“比光速更快1倍”,或者“绝对零度低1度”这样的名词,虽然没有语法上的障碍阻止我们提出这样的问题,但它们在物理上却是没什么意思的。
2022-06-12
系综解释说:我们应当知足,相信理论告诉我们的已经是这个世界的本质:它本就是统计性的!所以,徒劳地去设计隐变量是没有用的,因为实验已经告诉我们定域的隐变量理论是没有的,而且实验也告诉我们对同样的系统的观测不会每次都给出确定的结果。但是,我们也不能相信所谓的“叠加”是一种实际上的存在,电子不可能又通过左边又通过右边!我们的结论应该是:对于电子的态矢量,它永远都只代表系统“全集”的统计值,也就是一种平均情况!
2022-06-12
按照标准哥本哈根解释,这意味着单个电子必须同时处在|左>和|右>两个态的叠加之中,电子没有一个确定的位置,它同时又在这里又在那里!按照MWI,这是一种两个世界的叠加。按照隐变量,所谓的叠加都是胡扯,量子论的这种数学形式是靠不住的,假如我们考虑了不可见的隐变量,我们就能确实地知道,电子究竟通过了左边还是右边。
2022-06-12
量子论给我们留下了一些盲点,一些我们所不能把握的东西,比如我们没法准确地同时得到一个电子的位置和动量,这叫一些持完美主义的人们觉得坐立不宁,寝食难安。但系综主义者说:“不要徒劳地去探索那未知的领域了,因为实际上不存在这样的领域!我们的世界本质上就是统计性质的,没有一个物理理论可以描述‘单个’的事件,事实上,在我们的宇宙中,只有‘系综’,或者说‘事件的全集’才是有物理意义的。”
2022-06-12
有一种功利而实用主义的看法,是把量子论看做一种纯统计的理论:它无法对单个系统作出任何预测,它所推导出的一切结果,都是一个统计上的概念!也就是说,在量子论看来,我们的世界中不存在什么“单个”(individual)的事件,每一个预测,都只能是平均式的,针对“整个集合”(ensemble)的,这也就是“系综解释”(the ensemble interpretation)一词的来源。
2022-06-12
哥本哈根,MWI,隐变量。我们已经是第三次在精疲力竭之下无功而返了。隐变量所给出的承诺固然美好,可是最终的兑现却是大打折扣的,这未免教人丧气。
2022-06-12
但是,如果你忍受不了这一切,我们也可以走另一条路,那就是说,不惜任何代价,先保住世界的实在性再说。当然,这样一来就必须放弃定域性。我们仍然有可能建立一个隐变量理论,如果容忍某种超光速的信号在其体系中来回,则它还是可以很好地说明我们观测到的一切。比如在EPR中,天际两头的两个电子仍然可以通过一种超光速的瞬时通信来确保它们之间进行成功的合作。事实上,玻姆的体系就很好地在阿斯派克特实验之后仍然存活着,因为他的“量子势”的确暗含着这样的超距作用。
2022-06-12
换句话说,我们的世界不可能如同爱因斯坦所梦想的那样,既是定域的(没有超光速信号的传播),又是实在的(存在一个客观确定的世界,可以为隐变量所描述)。定域实在性(local realism)从我们的宇宙中被实验排除了出去,现在我们必须作出艰难的选择:要么放弃定域性,要么放弃实在性。
2022-06-12
不过,这只是经典世界里的罪犯,要是我们有两个“量子罪犯”,那可就不同了。我们会从口供记录中惊奇地发现,每当A决定聘请律师的时候,B就会有更大的可能性想要喝水,反之亦然!看起来,似乎是A和B之间有一种神秘的心灵感应,使得他们即使面临不同的质询时,其回答仍然有一种奇特的默契联系!量子世界的Bonnie & Clyde,即使他们相隔万里,仍然合作无间。按照哥本哈根解释,这是因为在具体地回答问题(观测)前,两个人(粒子)合为一体,处在一种“纠缠”(entanglement)的状态,他们是一个整体,具有一种“不可分离性”(inseparability)!
2022-06-11
我们这样来想象EPR实验:有两个罪犯抢劫了银行之后从犯罪现场飞也似地逃命,但他们慌不择路,两个人沿着相反的两个方向逃跑,结果于同一时刻在马路的两头被守候的警察分别抓获。现在我们来录取他们的口供,假设警察甲问罪犯A:“你是这次抢劫的主谋吗?”A的回答无非是“是”,或者“不是”。在马路另一头,如果警察乙问罪犯B同样的问题:“你是这次抢劫的主谋吗?”那么B的回答必定与A相反,因为主谋只能有一个,不是A先出的主意就是B先出的主意。两个警察问的问题在“同一方向”上,知道了A的答案,就等于知道了B的答案,他们的答案,100%地不同,协作率100%。在这点上,无论是经典世界还是量子世界都是一样的。
2022-06-11
换句话说,同样是读入10bits的信息,传统的计算机只能处理一个10位的二进制数,而如果是量子计算机,则可以同时处理210个这样的数!
2022-06-11
这就是从量子自杀思想实验推出的怪论,美其名曰“量子永生”(quantumimmortality)。只要从主观视角来看,不但一个人永远无法完成自杀,事实上他一旦开始存在,就永远不会消失!总存在着一些量子效应,使得一个人不会衰老,而按照MWI,这些非常低的概率总是对应于某个实际的世界!如果多宇宙理论是正确的,那么我们得到的推论是:一旦一个“意识”开始存在,从它自身的角度来看,它就必定永生!(天哪,我们怎么又扯到了“意识”!)
2022-06-11
我们的宇宙也是如此。“真实的,完全的”宇宙态矢量存在于一个非常高维(可能是无限维)的希尔伯特空间中,但这个高维的空间却由许许多多低维的“世界”所构成(正如我们的三维空间可以看成由许多二维平面构成一样),每个“世界”都只能感受到那个“真实”的矢量在其中的投影。因此在每个“世界”感觉到的宇宙都是不同的。
2022-06-11
目前宇宙似乎是在以一个“恰到好处”的速度在膨胀。只要它膨胀得稍微快一点,当初的物质就会四散飞开,而无法凝聚成星系和行星。反过来,如果稍微慢一点点,引力就会把所有的物质都吸到一起,变成一团具有惊人的密度和温度的大杂烩。而我们正好处在一个“临界速度”上,这才使得宇宙中的各种复杂结构和生命的诞生成为可能。这个速度要准确到什么程度呢?大约是1055分之一,这是什么概念?你从宇宙的一端瞄准并打中在另一端的一只苍蝇(相隔300亿光年),所需准确性也不过1030分之一。
2022-06-11
以这种带相当泛神论色彩的观点来看,万事万物都有着“意识”,只是程度的不同罢了。意识,简单来说,就是一个系统的算法,它“喜欢”那些大概率的输出,“讨厌”那些小概率的输出。一个有着趋光性的变形虫也有意识,只不过它的“意识”的复杂程度比我们人类要低级好多好多倍罢了。
2022-06-11
冯诺伊曼敏锐地指出,我们用于测量目标的那些仪器本身也是由不确定的粒子所组成的,它们自己也拥有自己的波函数。当我们用仪器去“观测”的时候,这只会把仪器本身也卷入到这个模糊叠加态中去。
2022-06-11
严格地说,电子在没有观测的时候什么也不是,谈论它是无意义的,只有数学可以描述——波函数!按照哥本哈根解释,不观测的时候,根本没有实在!自然也就没有实在的电子。事实上,不存在“电子”这个东西,只存在“我们与电子之间的观测关系”。
2022-06-11
波函数这种奇迹般的变化,在哥本哈根派的口中被称之为“坍缩”(collapse),每当我们试图测量电子的位置,它那原本按照薛定谔方程演变的波函数ψ便立刻按照那个时候的概率分布坍缩(我们记得ψ的平方就是概率),所有的可能全都在瞬间集中到某一点上。而一个实实在在的电子便大摇大摆地出现在那里,供我们观赏。
2022-06-11
因为我们的观测给事物带来各种原则上不可预测的扰动,量子世界的本质是“随机性”。
2022-06-11
对同一个对象来说,这些表现形态可能是互相排斥的,但必须被同时用于这个对象的描述中,也就是互补原理。
2022-06-11
量子论革命的破坏力是相当惊人的。在概率解释,不确定性原理和互补原理这三大核心原理中,前两者摧毁了经典世界的(严格)因果性,互补原理和不确定性原理又合力捣毁了世界的(绝对)客观性。
2022-06-11
剃刀原理是说,当两种说法都能解释相同的事实时,应该相信假设少的那个。比如,地球“本来”是方的,但“观测时显现出圆形”,这和地球“本来就是圆的”说明的是同一件事。但前者引入了一个莫名其妙的不必要的假设,所以前者是胡说。
2022-06-11
不存在一个客观的,绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够揭示出自然“是什么”,而在于它能够明确,关于自然我们能“说什么”。没有一个脱离于观测而存在的“绝对自然”,只有我们和那些复杂的测量关系,熙熙攘攘纵横交错,构成了这个令人心醉的宇宙的全部。测量是新物理学的核心,测量行为创造了整个世界。
2022-06-11
事实上,同时具有p和q的电子是不存在的!p和q也像波和微粒一样,在不确定性原理和互补原理的统治下以一种此长彼消的方式生存。对于一些测量手段来说,电子呈现出一个准确的p,对于另一些测量手段来说,电子呈现出准确的q。我们能够测量到的电子才是唯一的实在,这后面不存在一个“客观”的,或者“实际上”的电子!
2022-06-11
但量子世界就不同了,我们已经看到,我们测量的对象都是如此微小,以致我们的介入对其产生了致命的干预。我们本身的扰动使得我们的测量中充满了不确定性,从原则上都无法克服。采取不同的手段,往往会得到不同的答案,它们随着不确定性原理摇摇摆摆,你根本不能说有一个客观确定的答案在那里。
2022-06-11
我们的结论和我们的观测行为本身大有联系。这就像那匹马是白色的还是红色的,这个结论和我们用什么样的方法去观察它有关系。有些看官可能还不服气:“真相只有一个”,亲眼看见的才是唯一的真实。色盲是视力缺陷,眼镜是外部装备,这些怎么能够说是看到“真实”呢?其实没什么分别,它们不外乎是两种不同的观测方式罢了,我们的论点是,根本不存在所谓的柏拉图式的“真实”。
2022-06-11
我们再回到上一章的最后,重温一下波和粒子在双缝前遇到的困境:电子选择左边的狭缝,还是右边的狭缝呢?现在我们知道,假如我们采用任其自然的观测方式,让它不受干扰地在空间中传播,这时候,电子波动的一面就占了上风。它于是以某种方式同时穿过了两道狭缝,自身与自身发生干涉,其波函数ψ按照严格的干涉图形花样发展。但是,当它撞上感应屏的一刹那,观测方式发生了变化!电子突然和某种实物产生了交互作用——我们现在在试图探测电子的实际位置了!于是突然间,粒子性接管了一切,这个电子凝聚成一点,按照ψ的概率随机地出现在屏幕的某个地方。
2022-06-11
波和粒子在同一时刻是互斥的,但它们却在一个更高的层次上统一在一起,作为电子的两面被纳入一个整体概念中。这就是玻尔的“互补原理”(The Complementary Principle),它连同波恩的概率解释,海森堡的不确定性,三者共同构成了量子论“哥本哈根解释”的核心,至今仍然深刻地影响着我们对于整个宇宙的终极认识。
2022-06-11
我们的结论是,讨论哪个是“真实”毫无意义。我们唯一能说的,是在某种观察方式确定的前提下,它呈现出什么样子来。我们可以说,在我们运用肉眼的观察方式下,马呈现出白色。同样我们也可以说,在戴上眼镜的观察方式下,马呈现出红色。色盲也可以声称,在他那种特殊构造的感光方式观察下,马是红色。至于马“本来”是什么色,完全没有意义。甚至我们可以说,马“本来的颜色”是子虚乌有的。我们大多数人说马是白色,只不过我们大多数人采用了一种类似的观察方式罢了,这并不指向一种终极真理。
2022-06-11
福尔摩斯是这样说的:“我的方法,就建立在这样一种假设上面:当你把一切不可能的结论都排除之后,那剩下的,不管多么离奇,也必然是事实[3]。”
2022-06-11
首先爱因斯坦的相对论告诉我们空间本身也能扭曲变形,事实上引力只不过是它的弯曲而已。
2022-06-11
我们来设计一个极小极小的容器,它内部只能容纳一个电子,不留下任何多余的空间,这下如何?电子不能乱动了吧?可是,首先这种容器肯定是造不出来的,因为它本身也必定由电子组成,所以它本身也必然要有位置的起伏,使内部的空间涨涨落落。退一步来说,就算可以,在这种情况下,电子也会神秘地渗过容器壁,出现在容器外面,像传说中穿墙而过的崂山道士。不确定性原理赋予它这种神奇的能力,冲破一切束缚。
2022-06-11
海森堡的这一原理于1927年3月23日在《物理学杂志》上发表,被称作Uncertainty Principle。当它最初被翻译成中文的时候,被十分可爱地译成了“测不准原理”,不过现在大多数都改为更加具有普遍意义的“不确定性原理”。
2022-06-11
“但是,我们现在在谈论电子!它是如此地小而轻,以至于光子对它的撞击决不能忽略不计了。测量一个电子的位置?好,我们派遣一个光子去执行这个任务,它回来怎么报告呢?是的,我接触到了这个电子,但是它给我狠狠撞了一下后,飞到不知什么地方去了,它现在的速度我可什么都说不上来。看,为了测量它的位置,我们剧烈地改变了它的速度,也就是动量。我们没法同时既准确地知道一个电子的位置,同时又准确地了解它的动量。”
2022-06-11
在原则上,试图仅仅靠可观察的量来建立理论是不对的。事实恰恰相反:是理论决定了我们能够观察到的东西。”
2022-06-11
我们已经看到煊赫一时的经典物理大厦如何忽喇喇地轰然倾倒,我们已经看到以黑体问题为导火索,普朗克的量子假设是如何点燃了新革命的星星之火。在这之后,爱因斯坦的光量子理论赋予了新生的量子以充实的力量,让它第一次站起身来傲视群雄,而玻尔的原子理论借助了它的无穷能量,开创出一片崭新的天地来。
2022-06-11
可波恩的解释不是这样,波恩的意思是,就算我们把电子的初始状态测量得精确无误,就算我们拥有最强大的计算机可以计算一切环境对电子的影响,即便如此,我们也不能预言电子最后的准确位置。这种不确定不是因为我们的计算能力不足,它是深藏在物理定律本身内部的一种属性。即使从理论上来说,我们也不能准确地预测大自然。这已经不是推翻某个理论的问题,这是对整个决定论系统的挑战,而决定论是那时整个科学的基础。量子论要改造整个科学。
2022-06-11
可是,现在有人说,物理不能预测电子的行为,它只能找到电子出现的概率而已。无论如何,我们也没办法确定单个电子究竟会出现在什么地方,我们只能猜想,电子有90%的可能出现在这里,10%的可能出现在那里。这难道不是对整个物理历史的挑衅,对物理学的光荣和尊严的一种侮辱吗?
2022-06-11
不过,我们经过大量的观察,却可以发现,这个电子不是完全没有规律的:它在某些地方出现的可能性要大一些,在另一些地方则小一些。它出现频率高的地方,恰恰是波动所预言的干涉条纹的亮处,它出现频率低的地方则对应于暗处。现在我们可以理解为什么大量电子能组成干涉条纹了,因为虽然每一个电子的行为都是随机的,但这个随机分布的总的模式却是确定的,它就是一个干涉条纹的图案。这就像我们掷骰子,虽然每一个骰子掷下去,它的结果都是完全随机的,从1到6都有可能,但如果你投掷大量的骰子到地下,然后数一数每个点的数量,你会发现1到6的结果差不多是平均的。
2022-06-11
现在轮到薛定谔了,他说,不用那么复杂,也不用引入外部的假设,只要把我们的电子看成德布罗意波,用一个波动方程去表示它,那就行了。
2022-06-11
但是,玻尔也允许电子在不同的能量状态之间转换,或者说,跃迁。电子从能量高的E2状态跃迁到E1状态,就放射出E2-E1的能量来,这些能量以辐射的方式释放,根据我们的基本公式,我们知道辐射的频率为ν,从而使得E2-E1=hv。
2022-06-10
氢原子的光谱线代表了电子从一个特定的台阶跳跃到另外一个台阶所释放的能量。因为观测到的光谱线是量子化的,所以电子的“台阶”(或者轨道)必定也是量子化的,它不能连续而取任意值,而必须分成“底楼”“一楼”“二楼”等。在两层“楼”之间,是电子的禁区,它不可能出现在那里,正如一个人不能悬在两级台阶之间飘浮一样。如果现在电子在“三楼”,它的能量用W3表示,那么当这个电子突发奇想,决定跳到“一楼”(能量W1)的期间,它便释放出了W3-W1的能量。我们要求大家记住的那个公式再一次发挥作用,W3-W1 = hv。所以这一举动的直接结果就是,一条频率为ν的谱线出现在该原子的光谱上。
2022-06-10
把X射线看做能量为hv的光子束的集合。这个假定马上让他看到了曙光,眼前豁然开朗:那一部分波长变长的射线是因为光子和电子碰撞所引起的。光子像普通的小球那样,不仅带有能量,还具有冲量,当它和电子相撞,便将自己的能量交换一部分给电子。这样一来光子的能量下降,根据公式E = hv,E下降导致v下降,频率变小,便是波长变大,over(结束)。
2022-06-08
提高频率,提高频率。爱因斯坦突然灵光一闪:E = hv,提高频率,不正是提高单个量子的能量吗?而更高能量的量子,不正好能够打击出更高能量的电子吗?另一方面,提高光的强度,只是增加量子的数量罢了,所以相应的结果自然是打击出更多数量的电子!一切在突然之间,显得顺理成章起来[4]。
2022-06-08
学习方面,他在数学和科学方面显示出了非凡的天才,但是他笨拙的口齿和惨不忍睹的作文却是全校有名的笑柄。特别是作文最后的总结(conclusion),往往使得玻尔头痛半天:在他看来,这种总结只不过是无意义的重复而已。“作文总结难题”困扰玻尔终生,后来有一次他写一篇关于金属的论文,最后干脆总结道:In conclusion, I would like to mention uranium(总而言之,我想说的是铀)。
2022-06-08
但是,自从量子革命以来,学者们越来越多地认识到,空间不一定能够这样无限分割下去。量子效应使得空间和时间的连续性丧失了,芝诺所连续无限次分割的假设并不能够总是成立。这样一来,芝诺悖论便不攻自破了。量子论告诉我们,“无限分割”的概念是一种数学上的理想,而不可能在现实中实现。一切都是不连续的,连续性的美好蓝图,也许不过是我们的一种想象。
2022-06-08
其中E是单个量子的能量,ν是频率。那个h就是神秘的量子常数,以它的发现者命名,称为“普朗克常数”。它约等于6.626×10-27尔格•秒,也就是6.626×10-34焦耳•秒。这个值,正如我们以后将要看到的那样,原来竟是构成我们整个宇宙最为重要的3个基本物理常数之一(另两个是引力常数G和光速c)。
2022-06-08
必须假定,能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。
2022-06-08
这个时候,奇怪的现象发生了:当没有光照射到接受器的时候,接收器电火花所能跨越的最大空间距离就一下子缩小了。换句话说,没有光照时,我们的两个小球必须靠得更近才能产生火花。假如我们重新让光(特别是高频光)照射接收器,则电火花的出现就又变得容易起来。
2022-06-08
他驳斥了波动理论,质疑说如果光和声音同样是波,为什么光无法像声音那样绕开障碍物前进。
2022-06-06
如果谁不为量子论而感到困惑,那他就是没有理解量子论。”
2022-06-06
量子理论是一个极为复杂而又难解的谜题。她像一个神秘的少女,我们天天与她相见,却始终无法猜透她的内心世界。
2022-06-06
读后感※
两本科普,我这个没学过物理的人(学生物化学的),看着如同天书,做了很多笔记(差点没把每个字都做成笔记),并只能极力通过脑海中构建的简单的形象去理解,觉得匪夷所思的原因可能是我们看到的,听到的,学到的基本物理知识从理论和常识上(看得到、摸得着)都是自恰的,而有人告诉我不是这样。小朋友学量子物理或者广义相对论会不会容易点?一开始就告诉他,这个世界的规律是光怪陆离的,眼见肯定不为实,因为在见的过程中,实际已经对被观测对象造成了扰动,无法还原它被你观测之前的状态;另外,你看到的并不是我看到的,因为我们所处的坐标系及时间维度绝对不一致。另外,有两个感受:一是哲学不只是语言分析的工具,正确的哲学观念是一把方法论的瑞士军刀;二是没有边界定义的真理是不存在的。